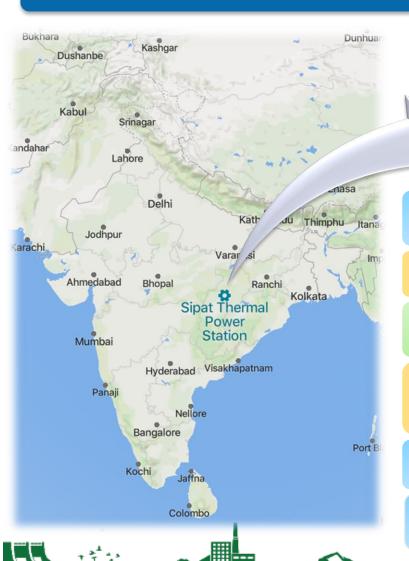


NTPC SIPAT **CII Power plant Summit** 2024



NTPC Sipat Station - 2980 MW

First Super Critical Power Plant of NTPC

Location

Nearest Rail head

Nearest Airport

Capacity

(2980 MW)

Commercial

Operation

Proposed Expansion

Sipat, Bilaspur

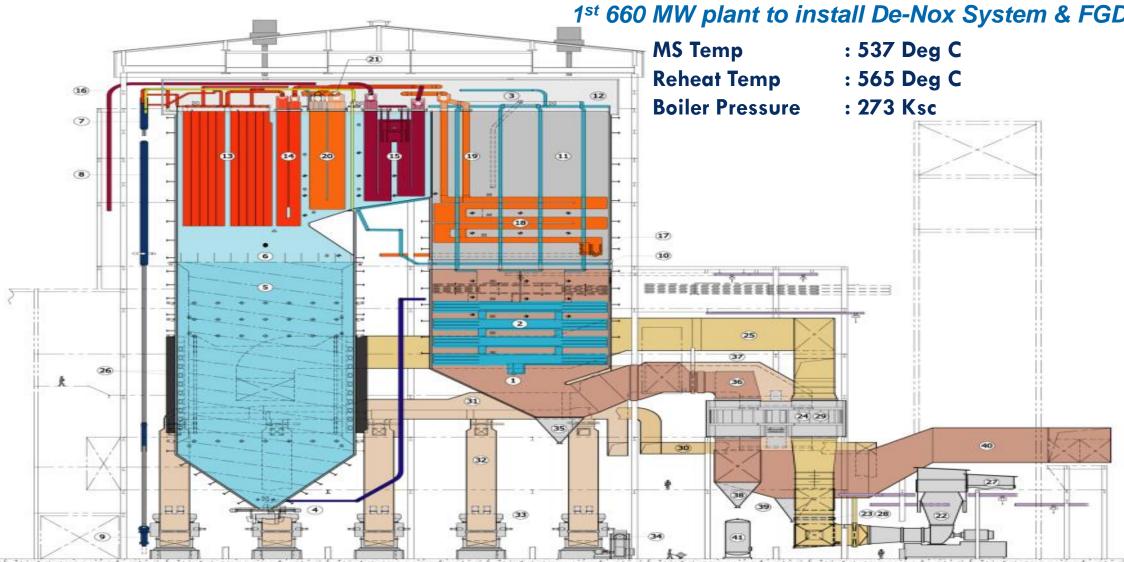
Bilaspur

Bilaspur (30KM) & Raipur (155 KM)

•St-I (3 X 660 MW): 1980 MW:

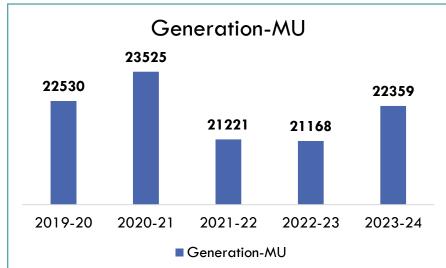
•St-II (2 X 500 MW): 1000 MW

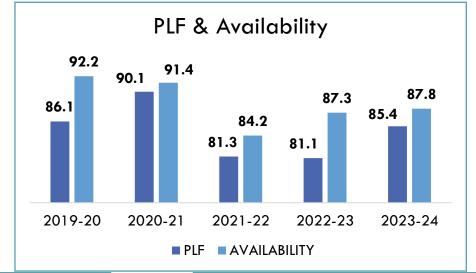
St-I (1980 MW): 01Aug'2012

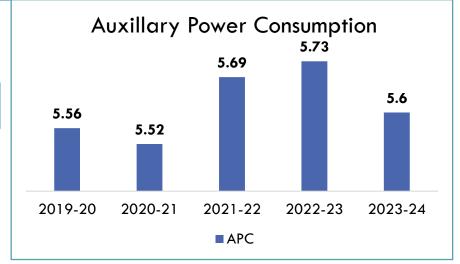

St-II (1000 MW): 01 Jan'2009

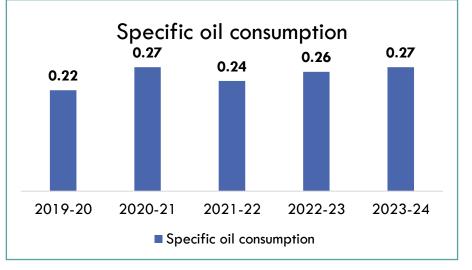
Stage-3: 1X800 MW Ultra Super Critical

Sipat Super Critical Boiler (2980 MW, 660 MW X 3 + 500 X 2 MW)

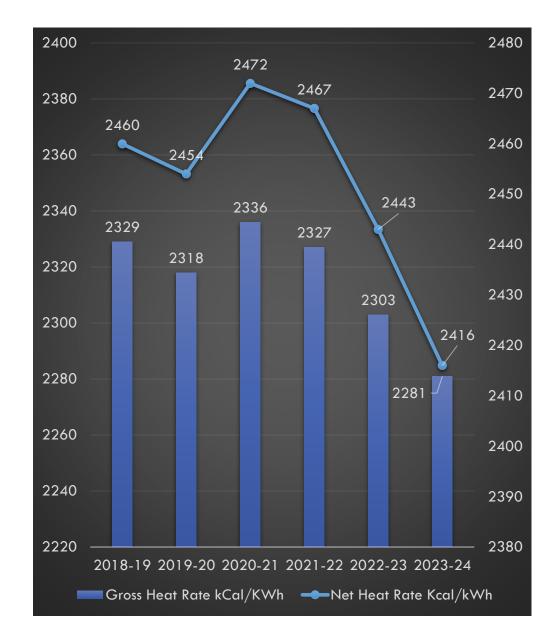

1st Supercritical project of NTPC 1st 660 MW plant to install De-Nox System & FGD System




SIPAT: Consistent performer over the years



APC is Best among all NTPC Station


Gross & Net Heat Rate Trends

CERC has fixed a normative Heat Rate for NTPC Sipat at 2338 kcal/kwhr based on the technology.

NTPC Sipat is a consistent improver of Net Heat Rate.

Despite high planned outage (10.71 %) resulting in lesser PLF Heat Rate improved by 29 Kcal/kWh.

Improvement in APC 0.13 % & Heatrate 22 Kcal/kWh.

Benchmarking with NTPC Best

APC Benchmarking- With NTPC Mauda

- CERC APC norms tightening.
- Similar supercritical units at NTPC Mouda.
- Mauda units best in APC among all NTPC for FY 2022-23.

 Co functional team created at NTPC Sipat for visiting NTPC Mauda and doing benchmarking study.

Do

Plan

Act Check

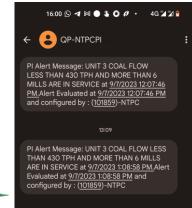
- Upgradation of Energy manageix system.
- Duct repair by thickness mapping and refractory lining at high erosion zones.
- High Pressure Jet Cleaning with boroscopy.

APC analysis at sub system level.

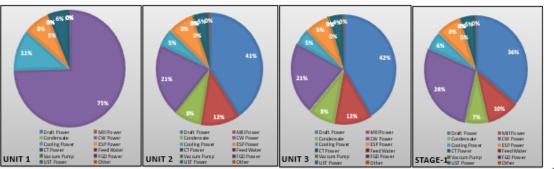
 Specific energy consumption for each system calculated in KW/MW.

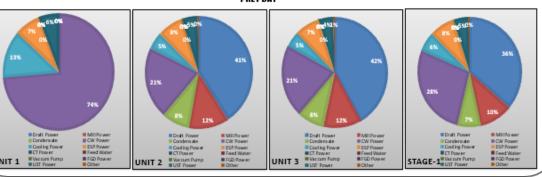
S N	Descripti on	Sipat- Stg I 660 MWX3	Mouda - Stg II 660M WX2	ECI- Sipat	ECI- Mouda (KW /MW)
		KW	KW	KW / MW	KW / MW
1	Draft Power	33501	18800	16.9	14.2
2	Milling Power	9986	7538	5.0	5.7
3	Condens ate System	6772	5012	3.4	3.8
4	CW System	17404	10728	8.7	8.1
5	ESP System	5702	4510	3.0	3.4

Upgraded Energy Management System With Mobile Alerts

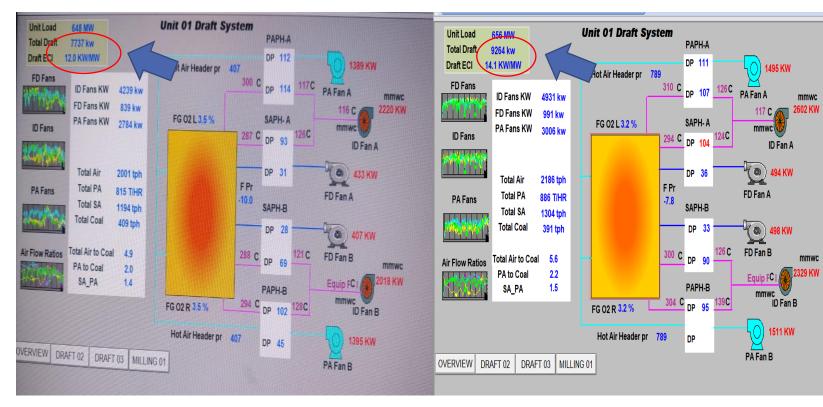

Real time Dashboard

Pi Alert sample message


Power trends


Day Report System Wise

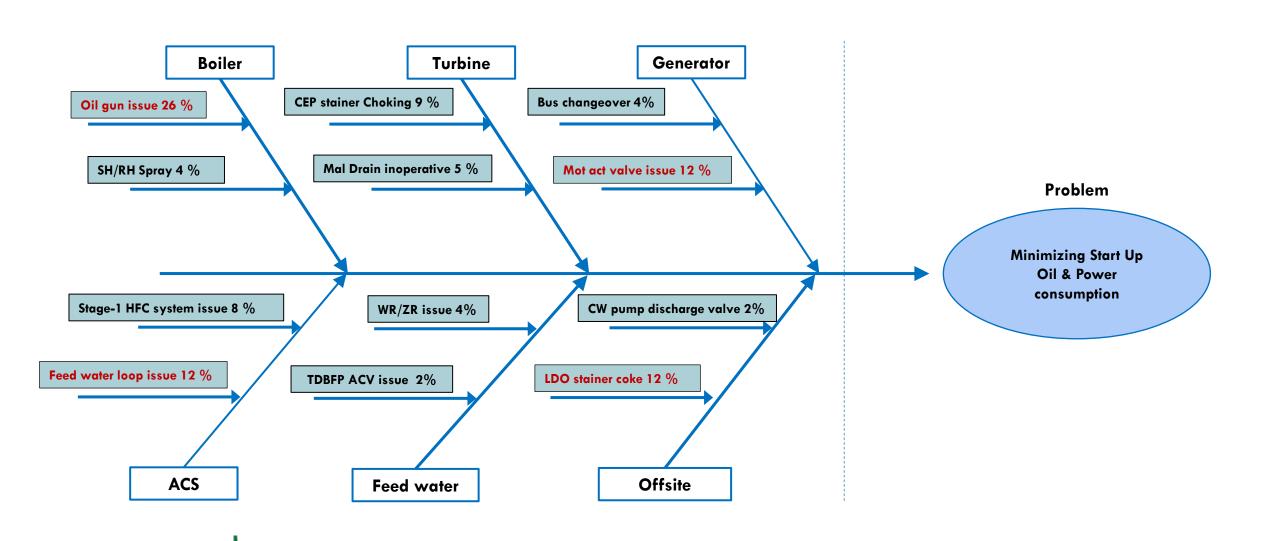
24-Jul-2023	Today			Pres Day					
Description	UHIT 1	UNIT 2	UMIT 3	Stage-1	UHIT 1	UMIT 2	UHIT 3	Stage-1	Romark
1 APC X	0.00	4.70	4.57	4.64	0.00	4.69	4.62	4.64	
2 UNITAPO	0	30538	29605	60144	0	30713	29893	60605	
3 Draft Pauer	0	11425	11260	22685	0	11486	11539	23025	
4 Mill Pauer	3	3281	3131	6415	0	3383	3190	6574	
5 Candonrato	0	2359	2267	4626	0	2365	2282	4647	
6 CW Paulor	5797	5850	5807	17454	5797	5848	5803	17448	
7 Cooling Pawer	885	1405	1315	3605	1028	1405	1317	3750	
8 ESP Paulor	600	2208	2048	4856	596	2172	2036	4803	
9 CTPauer	0	0	0	0	0	0	0	0	
10 Food Wator	0	0	0	0	0	0	0	0	
11 Vaccum Pump	0	102	104	206	0	102	104	206	
12 FGD Pauer	0	0	0	0	0	0	0	0	
13 USTPauer	490	1249	1154	2894	450	1249	1156	2855	
14 Othor	0	103	99	202	0	103	135	237	
	7775	27982	27186	62943	7871	28112	27562	63544	


PRET DAT

Sustainable Improvement in Draft Power

Draft power reduction by duct repair, thickness mapping, NMEJ repair, Refractory lining on flue gas guide vanes & area prone to erosion.

Unit 1 & Unit 2 overhauling completed 8-10 months ago and draft power still maintaining at 8000KW, approx. 1300KW better than pre-overhauling level



Sustained Condenser Performance Improvement

Minimising Startup Oil Consumption & Startup Power

Bench Marking

External: PAT (perform Achieve and Trade)

NTPC Sipat is Notified by BEE under PAT cycle VII

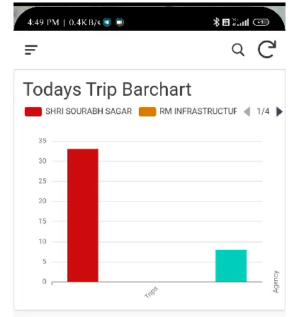
Baseline: 2418 kCal/kWh @ 2018-19

: 2412 kCal/kWh Target Assessment Year 2024-25.

PAT CYCLE	PERIOD	Aassess ment Year	NHR TARGET	NHR ACHIEVE D	ESCERTS
PAT CYCLE-I	2012-15	2014-15	2484	2438	+36443
PAT CYCLE-II	2016-19	2018-19	2430	2424	+13499

NTPC SIPAT TRADED CYCLE-1 ESCERTS ON IEX AND EARNED APPX 3 Cr.

PAT CYCLE-II M&V AUDIT, AEA RECOMMENDED FOR 13499 ESCERTS



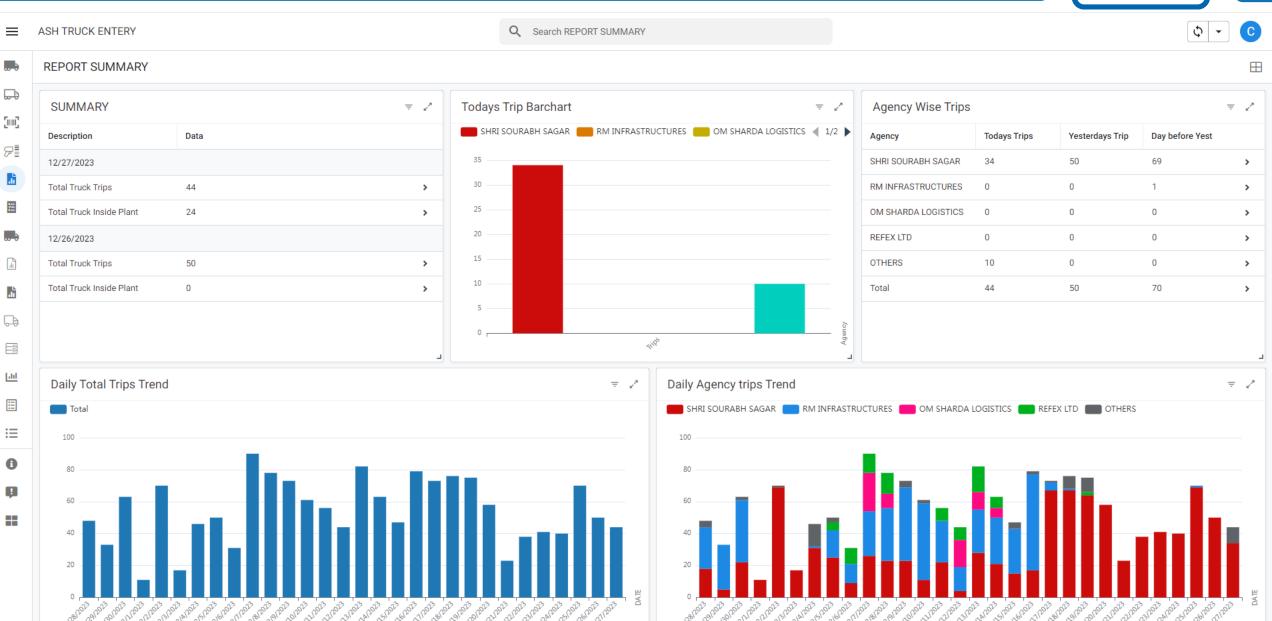
New Initiatives, Technology & Process Improvement Projects

Sample From Site

Todays Tru	ucks list	
Vehicle No	Validity Status	IN-Time
RJ13GC1257	Valid	4:50:49 AM
CG10BM2212	Valid	4:56:58 AM
CG10BL2083	Valid	5:00:02 AM
RJ11GB3581	Valid	5:04:08 AM
CG10BL2095	Valid	5:09:28 AM
RJ11GB8179	Valid	5:15:40 AM
RJ11GC1339	Valid	5:16:28 AM
	0	

PC and Printer for CISF for viewing and Printing reports

#####\$ #####\$ #####\$



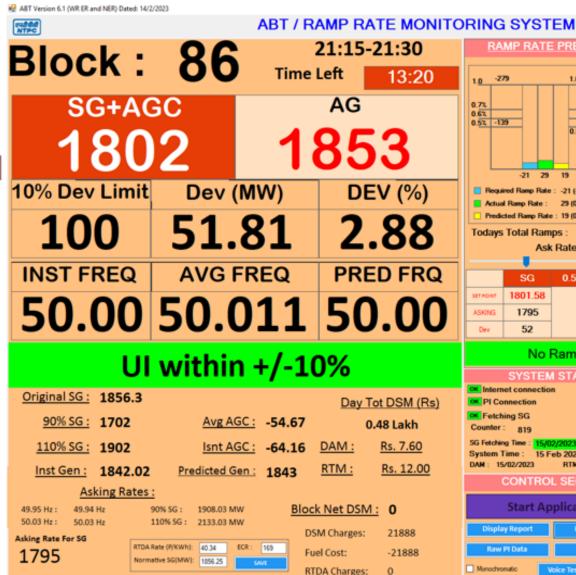
Real Time Dashboard (Android, Apple, Windows)

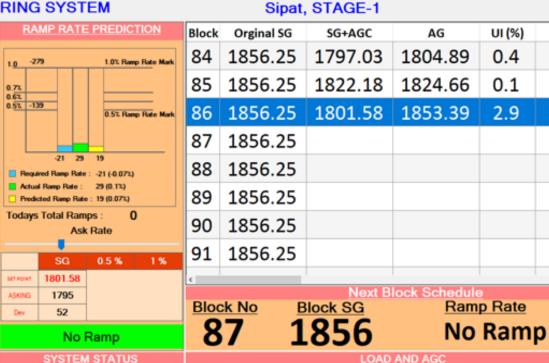
In House Application for Generation Monitoring

(पार्टिकेस NTPC

Avg Fre

50.0


49.9!


50.0

Implemented in 24 NTPC Projects. Won NTPC National Professional Circle Championship for This application * Pan NTPC **implementation** of NEW WBES

data fetching

Rev No

184

Export Report

15 Feb 2023, 09:16:43 PM

CONTROL SECTION

Start Application

PI Connection

K Fetching SG

15/02/2023

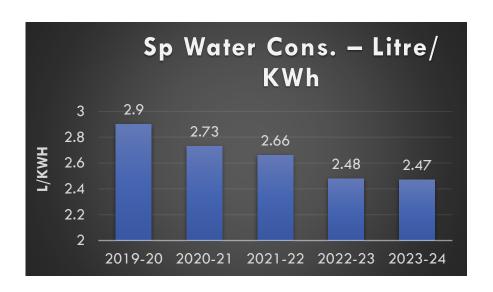
Display Report

Jnit No	Unit1	Unit2	Unit3	Tot(Nor)
Load	643	646	646	
Inst AGC	-23	-23	-23	-68.4(-64.2)
Avg AGC	-20	-19	-19	-58.3(-54.7)

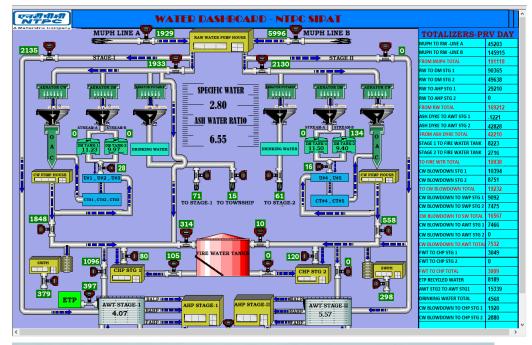
Application initialized and ready to use

LAST ALERT AND SYSTEM LOGS 15/02/2023 09:15:25 PM: Error in Fetching SG got resolved 15/02/2023 09:15:20 PM : SG Updating 5/02/2023 09:15:20 PM: Pi connection ok. 5/02/2023 09:15:15 PM: Voice Alert: Application initialized and ready to use 5/02/2023 09:15:07 PM: Connected to PI Server 5/02/2023 09:15:03 PM: Internet connection Restored 15/02/2023 09:15:03 PM: Error in Fetching SG

Trending & Prediction for Correct Operation



Water Conservation



Initiatives:

- Higher Cycle of Concentration (COC ~ 5)
- Zero Liquid Discharge (ZLD)- Complied
- Water Dashboard with water balance sheet.
- Rain Water Harvesting Systems
- Performance Optimization Group (POG)
- HDPE Lining in the Reservoir.

<u>Water Dashboard:</u> Real time monitoring of water consumption.

<u>Selected for PAN NTPC implementation</u>

Reservoir Seepage arrest: HDPE lining for reducing water

Total Reservoir Capacity: 4.8 MCM.

Water Saving: 4 MCM year

Water Cost saving: Rs 4.6 Cr

Pumping power Saving : 2.27 MU's / Rs 45 Lac per year.

Total Investment : Rs 27 Cr

A Floating Solar of 26 MW is under advance stage of Tendring.

Rainwater Harvesting

4 Nos of Rainwater Harvesting facilities installed.

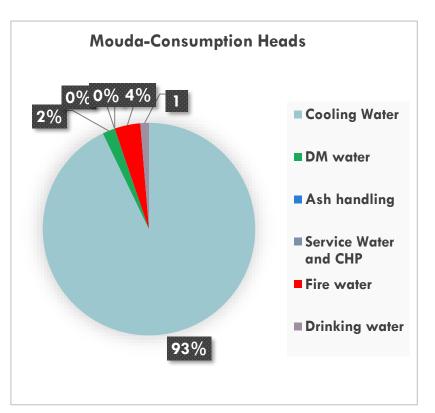
Modular, in-house design, fabrication and erection.

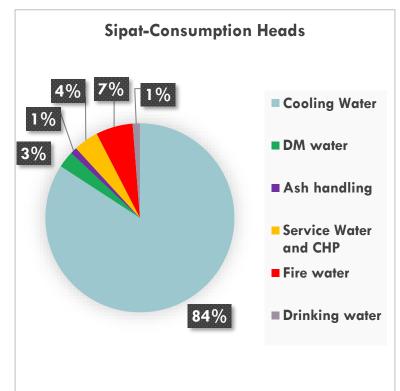
Rainwater collected at storm water channel – existing infrastructure.

Used in plant processes after a filtration process - gravity sand bed filter.

Total Savings:

Water Savings = 0.5 million m^3





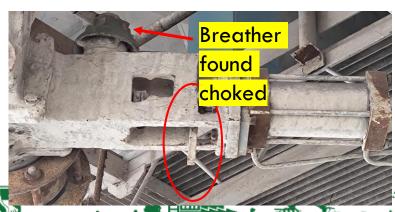
Water Consumption Benchmarkng - NTPC Mauda

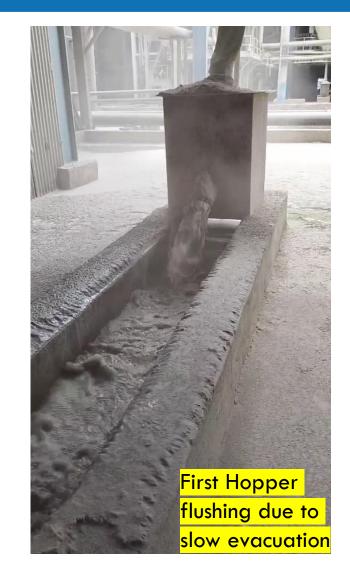
Specific water consumption : Mouda-2.16; Sipat 2.48Lt/unit

Only one reservoir in Mouda, capacity leading to reduced seepage and evaporation losses.

Dry ash utilisation 100% in Mouda due to high demand.

Special project for Dry Ash evacuation taken up at Sipat


Special project for Dry Ash evacuation at Sipat

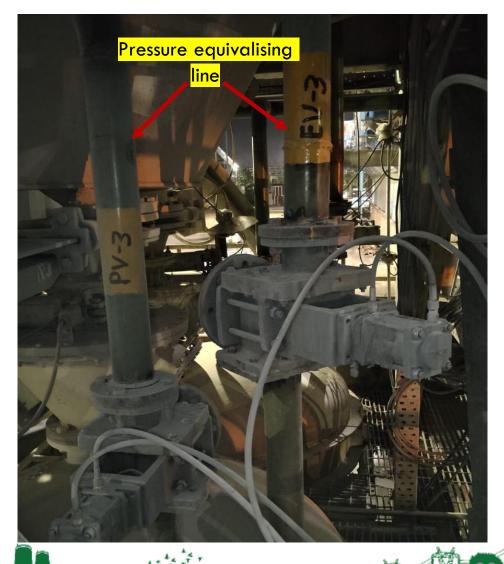

New technology UseApplication of Ultrasonic Leak Detector

Problem identification: Material Handling Valve frequent Malfunction

MHV malfunction resulted in

- Slow Dry ash evacuation and forcing wet ash handling.
- Increased water consumption and dyke filling.

3 Way Pressure Equalising Valve Non Functional


Non-Functional

Modification in Buffer Hopper 4A

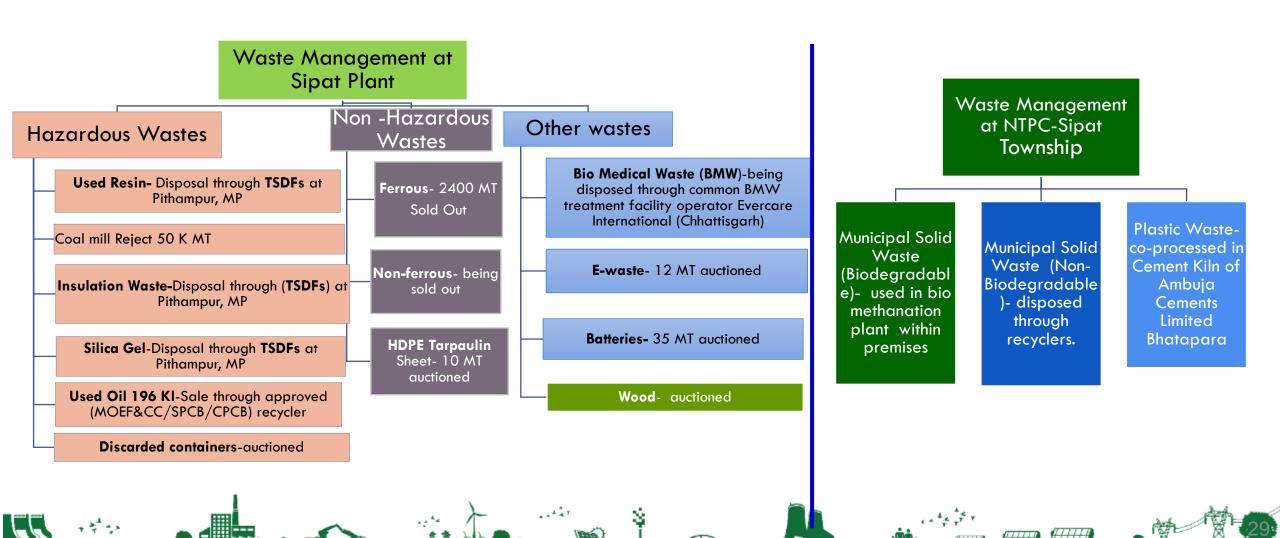
Air Ingress at MHV to Hopper/ ash line connection through use of acoustic leak detector

Issue of poor suction vacuum in Ash evacuation header from ESP.

Air Ingress point identification by use of technology (acoustic leak detector).

Line header vacuum improvement achieved (250 mmwc), resulted in reduction of vacuum pump/FAHP running.

For Fugitive Dust control at Ash Dyke


Beshram Plantation

1.25 lakh sq mtr. area covered by Tarpaulin

Environment Management : Scrap/Waste Disposal

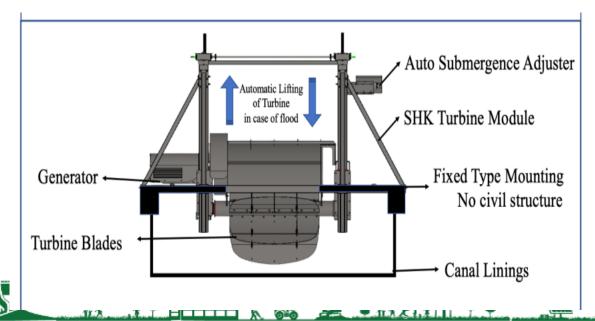
Segregation of wastes generated at NTPC-Sipat is being done. Waste management at NTPC-Sipat is presented as per the flow chart given below- NTPC Has sold 10.73 Cr form Scrap sales form Scrap sales.

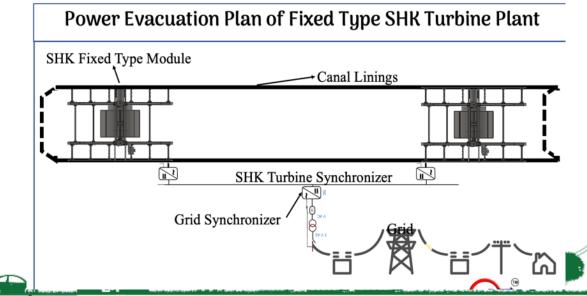
Out of the BOX Harnessing Hydro power from Cooling Tower discharge

Site for the project

Site to Harness Energy- Cooling Tower Discharge Canal – Stage 1

Location:


- Stage 1 Cooling Tower Discharge after the bucket strainer
- Canal dimension: 4.5m(Width) x 3.5m (Depth) x 85m (length)
- Approx. Minimum water velocity 1m/sec

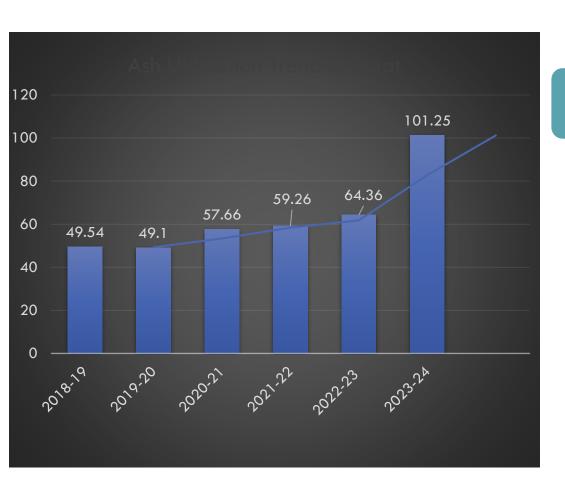


Turbine Design

Project Abstract & Feasibility

SN	Parameter	Details	
1	Site location	6 no canal in stage 1 Cooling Tower discharge	
2	Module in each canal	3 X 10KW	
3	Capex (including Maint cost 5 yrs)	Rs 2.5 Lakh/KW (for 18 modules) 180 KW (Total 6 x 3 x 10KW) 1.44 MUs	
4	Capacity		
5	Annual Energy generation		
6	Unit cost of Sipat (FY 2022-23 Avg)	Rs 3.17/ unit	
7	Pay-back period	9.9 years	
8	Useful life of Hydro turbine	40 years	

Moving towards Net Zero Township


Total Installed capacity kWp (DC)	* Under installation by Station (kWpDC)	Under installation through NVVN/ NTPC RE (kWpDC)	Township Yearly Energy Consumption (MU)	Yearly Solar Generation (MU)	Energy Shortfall (MU/kWe)	Remarks
800	373	26000	9.02	0.82	_	 373 kW PO Awarded. Material u/transit. Floating solar(26MW) in reservoir#1B: through NTPC RE. (Award – 15Jul'24) 2.3MW Ground mounted NIT Done, BOD-22.07.24 CW Hydro turbine proposal of 1.5 MW being expedited.

	National Average*	Sipat (Total consumption)
Per Capita Electricity Consumption National per annum (in KWh)	1255	1227

Township water consumption LMC	Rainwater reuse in plant. LMC	Per capita water consumption. Lts/day	STP kLd
3.76	5.2	187	1500

Ash Utilization (%)

Ash Utilization Plan FY'2024-25

: 54 LM³ Total Ash generation (Projected)

: 112.9 % • AU planned for FY 24-25

• Ash Utilization Target for FY'24-25 : 60.96

 LM^3

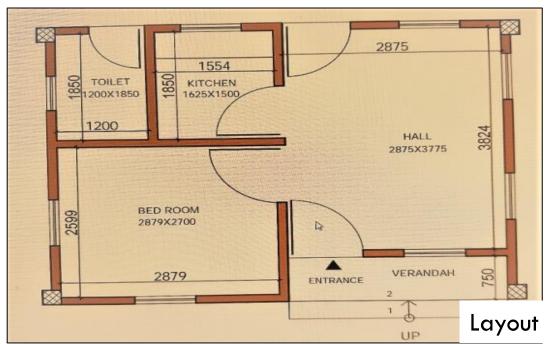
Highest ever DFA (Dry Fly Ash utilization of 10.82 LMT in FY23-24, using HMDC (Hydro Mix dust conditioner).

LOW-COST GREEN HOUSING (LCGH) AN INNOVATIVE APPROACH

Salient features

- Cost:1.25 Lakh
- Area 322 sq feet
- Ash Utilization- 40 T per house
- NO use of natural sand & aggregates
- In-house manufactured Ash products used:
 - i. Aggregates
 - ii. Interlocking wall block
 - iii. Bottom Ash
 - iv. Paver blocks
 - v. Tiles
 - vi. Ash Based Ventilators
 - ii. Door and Window frames

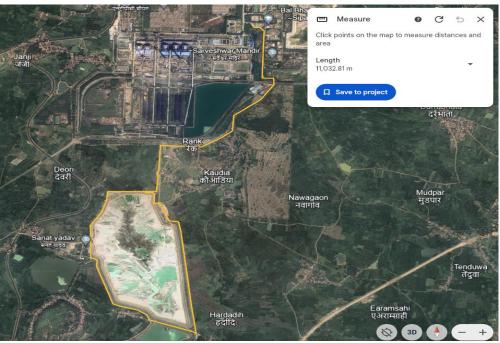
LOW-COST GREEN HOUSING (LCGH)



LOW-COST GREEN HOUSING (LCGH) AN INNOVATIVE APPROACH

Dry Ash Dispatch by Rail to Cement companies

Total number 13 rakes dispatched in current year to cement industries.



Geo Polymer Concrete (GPC) ROAD STATUS

GPC Road from **SAMAWESHI BHAWAN** to **Dyke- 1** is under construction

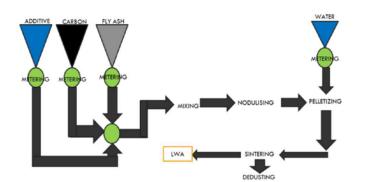
Status:

8.6 km/11 km completed

Expected date of completion: 30-11-2024

Ash products- Displayed in exhibition

NTPC SIPAT LWA PROJECT, PILOT TO PRODUCTION



Inauguration BY Hon'ble PM

LWA Facility

Light Weight Aggregate (LWA) plant Sipat

Fly ash based Light weight aggregate as an alternate for natural stone concrete

50000 Ton capacity plant under commissioning, first lot to be produced by 30.09.23

Cost of LWA Rs 1700/Ton

Cost of Natural Stone aggregate: Rs 2000 /

Trail production done on

ASH TECHNOLOGY- PROJECTS

S N	Project	Salient features	Status
1.	 Geopolymer Lab Set up 20 TPD equipment Testing facilities 	 In-House Production & Testing of Ash based products Development of Design Mix for new products and on going projects 	20 TPD machine installed and commissioned
2.	GPCA	Polymer Coarse Aggregate) • Substitute for Natural resources	The Projects are done to establish the techno commercial viabilities of the technology. The alternate use of Ash in making aggerate and sand will make save natural resources and will result in resolving ash disposal issue.
3.	NACA	 In house development of NACA (NANO Concrete Aggregate) Substitute for Natural resources Potential for bulk ash utilization (70%) 	

Ash Technology: NI projects

SN	Project	Project/Benefit	
4.	Ash to Sand	 Bulk ash utilization Conservation of natural resources Revenue Generation 	Under implementation
5.	Interlocking Wall Blocks	 No need of plastering and mortar Geopolymer/high volume fly ash based cement blocks possible 	

Ash to Sand Facility at NTPC Sipat


Pellet making machine

Pelletization of Biomass generated in plant premises – to cofire with coal (200 kg/hr)

TREE PLANTATION

Tree Plantation Since Inception: 1170801

Miyawaki Technique

✓ Growing dense forest in limited space

Mission 1 Lakh Trees in FY 2023-24

Tree plantation Plan in FY 2023-24							
1.	MGR Track (completed)	25,000					
2.	DM Plant (Miyawaki) Completed	23,000					
3.	Bhilmi Village (Miyawaki) In progress	32,000					
4	Uchbhati village (Miyawaki) PO placed	32,000					
	Total	1,12,000					

800 KW ROOF TOP SOLAR PV AT NTPC SIPAT

Туре	Location	Installed Capacity
Rooftop Solar PV	NTPC Sipat Hospital	50 KW
Rooftop Solar PV	Administrative Building	100 KW
Rooftop Solar PV	Solar PV at various building inside the plant	650 KW

Upcoming Solar PV in Sipat:

200 KW Solar for Township power consumption, work started.

173KW in switchyard and office building

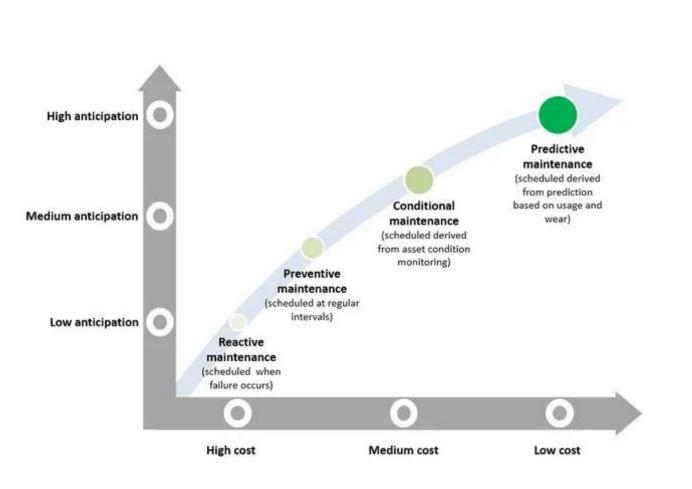
26 MW Floating solar in reservoir are, work under award.

2 MW ground mounted solar in switchyard area planned.

Flue Gas Desulphurisation (FGD)

- FGD implementation:
 - Unit 1 & Unit 3 FGD Hot gas In Achieved
 - Unit 3 FGD Gypsum production started

Energy Savings projects implemented in last 3 years


S. No	Year	Nos of Energy Saving Projects	Investment (INR Millions)		Thermal Saving (Million Kcal)	Total Saving (INR Million)
1	2020-21	11	46.5	25.3	80850	82.13
2	2021-22	7	114.78	13.64	158400	109.17
3	2022-23	5	63.0	15.94	167556	134.1
4	2023-24	6	49	32.52	26337	69

Highlight of FY 2023-24

- Repair/Overhauling of identified mills with higher specific energy consumption
- Air ingress in duct and boiler attended during Unit overhaul
- Optimising FAHP Pump running hours.
- Stage-1& 2 CT Fill replacement.
- Condenser water box cleaning

Condition Monitoring

Vibration Analysis

 Monitor Vertical, Horizontal & Axial Vibration along with Spectrum Analysis to evaluate Root Cause

Motor Current Signature Analysis

 Analyze electrical current waveform for detecting faults, bearing wears and insulation degradation

Infrared Thermography

 Measure surface temperature to identify Hot Spots and thus assess damage

Condition Monitoring

Noise Measurement

 To determine the noise levels and whether they are suitable for workers and occupants

Dissolved Gas Analysis

 Examine gas concentrations in Transformer oil to identify faults

Wear Debris Analysis

 Lub Oil Sampling to evaluate metal particles composition, concentration and size to identify potential issues, such as contamination and excessive wear.

Condition Monitoring Cont.....

Condition Monitoring Summary						
	Equipments	Exception Reported	Due			
WDA	178	0	0			
DGA	71	0	0			
ermography	508	40 (Under observation)				

S.No.	Plant Sample (Equipment Name)	Testing Date	Frequency (months)	Particle Quantifier PQ index	Next Testing Due	Limits
		BMD Equi	pments		Due	
1	MILL -1A	15-07-2024	3	16	45 45 45	
2	MILL -18	15-07-2024	3	12	15-10-2024	Mill gear box oil-500
3	MILL-1C	15-07-2024	3	10	15-10-2024	(w/o side filtration)
4	MILL-1D	15-07-2024	3	23	15-10-2024	
5	MILL -1E	15-07-2024	3	11	15-10-2024 15-10-2024	****
6	MILL-1F	15-07-2024	3	10	15-10-2024	Mill GB - 200 (with
7	MILL-1G	15-07-2024	3	12	15-10-2024	side filtration)
8	MILL-1H	15-07-2024	3	10	15-10-2024	
9	MILL-1J	15-07-2024	3	10	15-10-2024	Ball mill- 100
10	MILL -1K	15-07-2024	3	22	15-10-2024	
11	MILL -2A	15-07-2024	3	9	15-10-2024	Others (APH, Fan,
12	MILL -2B	15-07-2024	3	10	15-10-2024	etc.)-25
13	MILL -2C	15-07-2024	3	11	15-10-2024	
14	MILL-2D	15-07-2024	3	10	15-10-2024	APH GBX-50
-	MILL -2E	15-07-2024	3	11	15-10-2024	
15	MILL -2F	15-07-2024	3	15	15-10-2024	-
16		15-07-2024	3	10	15-10-2024	-
17	MILL -2G	15-07-2024	3	12	15-10-2024	
18	MILL -2H	15-07-2024	3	11	15.10.2024	
19	MIII - 21	15.07.2024	3	12		
	MILL*2H	15-07-2024	3	10		
	Mill 26	15-07-2024	3		13/10-2024	
17	HHI			17. 4.	1	

S.No.	Equipment Name	Testing Date	Frequency	OK/Not OK	Next Testing		
137	CF MOTOR - 1A		(months)	ON MOLOK	Due		Last testing observation if a
138	CF MOTOR - 1B		1		oue		discoveryation if ar
139	VAC P/P MOTOR - 1A	2024-07-09	1	Ok		S/D	
140	VAC P/P MOTOR - 1C			OK.	09-08-2024		
141	VAC P/P MOTOR - 1B					S/D	
142	AWU - 1	2024-07-09	1	Ok	09-08-2024	S/D	
143	AWU - 2	2024-07-09	1	Ok	09-08-2024		
144	SEAL OIP P/P MOTOR - 1A				03 00-2024	S/D	
145	SEAL OIP P/P MOTOR - 18	****				S/D	
146	TDBFP - 1A ROP	2024-07-09	1	Ok	09-08-2024	3/0	
147	TDBFP - 18 MOP	2024-07-09	1	Ok	09-08-2024		PANEL SIDE : Y:72.6,B:72.9
148		2024-07-09	1	UNDER OBSERVATION	09-08-2024	PANEL SIDE: R: 69.7	FAIREL SIDE : 1:72.0,8:72.9
149	MOP - 1A	2024-07-09	1	UNDER OBSERVATION	09-08-2024	PANEL SIDE: Y: 75.3	
150	TDBFP - 1A VAC P/P - B	2024-07-09	1	Ok	09-08-2024		
151	TDBFP - 1B VAC P/P - A	2024-07-09	1	Ok	09-08-2024		
	MDBFP - 1A AOP	2024-07-09	1	Ok	09-08-2024		
152	MDBFP - 1B AOP	2024-07-09	1	Ok	09-08-2024		DANIEL CIDE D. TO C
153	PRIM WATER MOTOR - 1A	2024-07-09	1	Ok	09-08-2024		PANEL SIDE: R:72.6
154	SEAL AIR FAN MOTOR - 18	2024-07-09	1	Ok	09-08-2024		
155	SGECW MOTOR - 1B	2024-07-09	1	Ok	09-08-2024	PANEL SIDE : B:69.2	PANEL SIDE : B:67.2
156	AWU - 7	2024-07-09	1	UNDER OBSERVATION	09-08-2024		
157	AWU - 8	2024-07-09	1	UNDER OBSERVATION	09-08-2024	MOTOR DE END : 66.3	MOTOR DE END :81.5
	PAPH MOTOR - 1A	2024-07-09	1	Ok	09-08-2024		
158 159	PAPH MOTOR - 1B	2024-07-09	1	Ok	09-08-2024		
	SAPH MOTOR - 1A	2024-07-09	1	Ok	09-08-2024		
160	SAPH MOTOR - 1B	2024-07-09	1	Ok Ok	09-08-2024		
161	AC SCANNER MOTOR	2024-07-09	1	OK OK	09-08-2024		
162	AC SCANNER MOTOR	2024-07-09	1	Ok Ok			
162	SAPH MOTOR - 18	2024-07-09		Ok			
161							

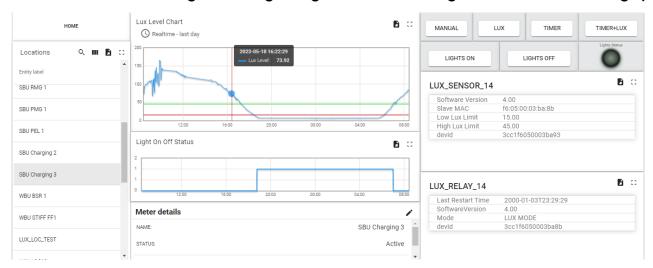
INVENTORY MANAGEMENT

@ NTPC Sipat

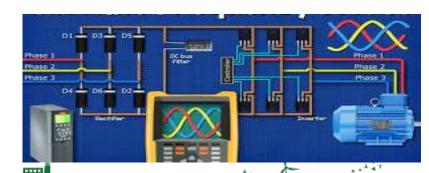
Inventory Reduction Action plan - Through SAP

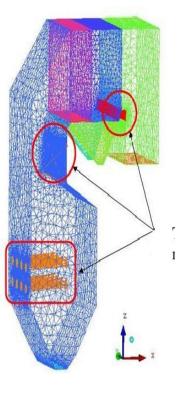
SN	Strategy	Action Plan	Remarks
1	Procurement after Stringent Scrutiny	,	FY 23-24-Procurement initiated - 132 Cr/ Consumption — 166 Cr (Inventory Reduction of 34 Cr.)
2	Review of mapping of "Minimum" Critical Spares in SAP	Departments to review Inventory for critical tagging. (50 Cr inventory already tagged as critical)	,
3	ZSPR to ZCSP Conversion & transfer of inventory	Identification of ZSPR which are currently tagged as ZCSP	13.2 Cr material identified & note initiated for conversion to ZCSP
4	Review of material issued to Vendor	Booking of Free issue material issued to Vendor after reconciliation.	Vendor store inventory has reduced from 5 Cr to 2.48 Cr.
5	Reviewing items lying in blocked codes	Inventory lying in blocked codes is being reviewed.	Blocked code amounting to 9 crs have been cleansed

Learning from last CII Event.



ENERGY EFFICIENCY VENDOR MEET


EC Projects discussed for Implementation in Vendor Meet


• Smart Air conditioning and Lighting control through Internet of Things(IOT) Applications

- IE 4 Motors for VFD Applications
- VFD in Stage 2 CEP
- CFD Analysis of Boiler Draft System

Energy Management System and SEC monitoring tools

 NTPC Sipat certified with ISO 50001:2018 certification for conformance to energy management system standards in all aspects.

